Densidad y presión. Destrucción del ozono

Densidad y presión:

- La densidad del aire seco al nivel del mar representa aproximadamente un 1/800 de la densidad del agua.

- A mayor altitud desciende con rapidez, siendo proporcional a la presión e inversamente proporcional a la temperatura.

- La presión se mide mediante un barómetro y su valor, expresado en torrs, está relacionado con la altura a la que la presión atmosférica mantiene una columna de mercurio; 1 torr equivale a 1 mm de mercurio.

- La presión atmosférica normal a nivel del mar es de 760 torrs, o sea, 760 mm de mercurio. En torno a los 5,6 km es de 380 torrs; la mitad de todo el aire presente en la atmósfera se encuentra por debajo de este nivel.

- La presión disminuye más o menos a la mitad por cada 5,6 km de ascensión.

- A una altitud de 80 km la presión es de 0,007 torr.

Destrucción del ozono:

- En la parte más baja de la atmósfera está presente, en proporciones muy reducidas, el ozono, un isótopo del oxígeno con tres átomos en cada molécula.  La capa atmosférica que va de los 20 a los 40 km tiene un mayor contenido en ozono, producido por la radiación ultravioleta procedente del Sol.  Pero, incluso en este estrato, el porcentaje es sólo de un 0,001 por volumen.

- Las perturbaciones atmosféricas y las corrientes descendentes arrastran distintas proporciones de ozono hacia la superficie terrestre.  En las capas bajas de la atmósfera, la actividad humana incrementa la cantidad de ozono, que se convierte en un contaminante capaz de ocasionar daños graves en las cosechas.

- La capa de ozono se ha convertido en motivo de preocupación desde comienzos de la década de 1970, cuando se descubrió que los clorofluorocarbonos (CFC) estaban siendo vertidos a la atmósfera en grandes cantidades a consecuencia de su empleo como refrigerantes y como propelentes en los aerosoles.  La preocupación se centraba en la posibilidad de que estos compuestos, a través de la acción solar, pudiesen atacar fotoquímicamente y destruir el ozono estratosférico, que protege la superficie del planeta del exceso de radiación ultravioleta.  Como consecuencia, los países industrializados abandonaron la utilización de clorofluorocarbonos.

Más del Tema
Contenidos Relacionados

- Analizaremos aquí la utilización de los ultrasonidos por su capacidad de liberar en los tejidos.  Se denomina ultrasonido a las vibraciones mecánicas propagadas en los medios elásticos que tienen una frecuencia mayor al límite audible (20.000 c/s).

- El sonido, onda mecánica transmitida por vía aérea, hace vibrar la membrana timpánica. Este movimiento oscilatorio se transmite a la ventana oval por la cadena ósea situada en el oído medio.

- La palanca formada por los huesillos aumenta la fuerza del movimiento transmitido al tímpano en un 30%.

La audiometría consiste en la determinación de los umbrales de sensibilidad auditiva de un individuo para las distintas frecuencias (espectro audible). Para ello se considera un sonido como cero decibel cuando tiene la intensidad del mínimo audible para la mayoría de la población a 1000 c/s (10-12 Watt/m2).

Las intensidades que puede captar el oído humano varían entre I0-12 W/m2 y 1 W/m2 (un factor enorme de 1012). El oído humano percibe la intensidad de un sonido como una sensación subjetiva de sonoridad. Sin embargo, si la intensidad se duplica, la sonoridad no se incrementa por un factor de 2. Experimentos realizados por vez primera por A. G. Bell mostraron que para duplicar la sonoridad, la intensidad del sonido debe aumentarse aproximadamente en un factor de 10.

La intensidad del sonido audible va desde aquel que produce sobre la membrana del tímpano una presión de 2.10-5 Newton/m2 (sonido mínimo audible; I = 10-12 Watt/m2) hasta el que produce presiones de 28 Newton/m2 (sonido máximo tolerable; I = 102 Watt/m2) (ver cuadro sgte).

- La distancia a la que se puede oír un sonido depende de su intensidad, que es el flujo medio de energía por unidad de área perpendicular a la dirección de propagación.

- La amplitud de una onda de sonido es el grado de movimiento de las moléculas de aire en la onda, que corresponde a la intensidad del enrarecimiento y compresión que la acompañan.  Cuanto mayor es la amplitud de la onda, más intensamente golpean las moléculas el tímpano y más fuerte es el sonido percibido, (ver Figura 6.3.).