Proyección de Rectas

Notación convencional.Para mayor claridad y comprensión de las indicaciones sobre la ubicación de las rectas, adoptaremos el uso convencional de los puntos cardinales y arriba – abajo del modo que indica la figura 50.

Indicación.Se debe tratar las siguientes proyecciones como si se trataran de dos puntos que corresponden a los extremos de las rectas y que luego se unen mediante rectas.

XXVII. Proyecciones ortográficas de rectas.— (Fig. 51).

a) Recta en el espacio, posición vertical.Los dos extremos A y B de la recta se conjuncionan en un solo rayo proyectante dando la proyección un punto AB1 en el PH.

Proyecciones - Proyección de rectas - Artes plásticas - Dibujo técnico - www.educa.com.bo

b) Recta en el espacio, posición oblicua, bajando de E a O.— Se proyectan los dos puntos extremos de la recta con rayos proyectantes hasta tocar el PH en los puntos C1 y D1.  Unimos estos puntos resultando la proyección de C D con dirección E O.

c) Recta en el espacio, posición horizontal, dirección E – O.— Bajar con proyectante los extremos E F el PH, dando la proyección de una recta E1 F1 también con orientación E – O.

XXVIII. d) Recta en el espacio, posición horizontal, dirección N. – S.(Fig. 52). Bajar rayos proyectantes de los extremos al PH, dándonos G1 H1 también con orientación N – S.

e) Recta oblicua, bajando de O a E, con el extremo inferior apoyado al PH.— El extremo J no tiene proyección, pues toca el PH.  En cambio, de I se baja un rayo de proyección dando I1.  Se une I1 y J, resultando la proyección con orientación O – E.

XXIX.— Proyecciones icnográficas de rectas.— (Fig. 53).

a) Recta vertical en el espacio.— Se lanza rayos de proyección de los puntos K y L al PV, dándonos la proyección, de una recta K1 L1 también vertical.

b) Recta oblicua en el espacio, subiendo de O a E.Se proyecta los puntos extremos hasta tocar el PV dando la proyección de una recta vertical M1 N1.

c) Recta horizontal en el espacio con dirección N – S.Trazar rayos proyectantes de los extremos de la recta dando las proyecciones O1 P1 que también tiene orientación N S.

Proyecciones - Proyección de rectas - recta horizontal en el espacio con dirección n s - Artes plásticas - Dibujo técnico - www.educa.com.bo

XXX. d) Recta oblicua, subiendo de O a E, con el extremo inferior tocando el PV.—(Fig. 54).  El extremo R carece de proyección.  Q se proyecta icnográficamente dando Q1. Uniendo R Q1 se obtiene vina recta vertical como proyección de Q R.

e) Recta oblicua en el espacio bajando de O a E.— La proyección resultante es una línea vertical S1 T1.

Como se podrá observar, las rectas pueden asumir diferente posición y orientación.  Para complementar lo estudiado, mostramos los gráficos de las figuras 55, 56 y 57.

Proyecciones - Proyección de rectas - recta oblicua - Artes plásticas - Dibujo técnico - www.educa.com.bo

LAMINA N º 8. — Proyecciones Ortogonales en un plano.  Puntos y Rectas.

Sugerencias.— Las rectas principales trazar con color azul, los rayos proyectantes con negro y las proyecciones con rojo.

        Proyecciones - Proyección de rectas - recta oblicua - Artes plásticas - Dibujo técnico - www.educa.com.bo

Efectuar proyecciones ortográficas.

1. De un punto A en el espacio, y del punto B pegado al PH.

2. De una recta vertical A B en el espacio.

De una inclinada C D subiendo de O a E, en el espacio.

De una horizontal E F en el espacio con orientación O – E.

3. De una horizontal G H en el espacio con orientación N – S.

De una oblicua I J, bajando de O a E y el extremo inferior pegado al PH.

Proyecciones icnográficas.

4. De un punto C en el espacio, y del punto D muy cerca del PV.

5. De una vertical K L en el espacio.

De una horizontal O P en el espacio con orientación N – S.

De una oblicua N M subiendo de O. a E. en el espacio.

Evaluación: Problema para que sea resuelto por el alumno. (Ver Fig. 58).

6. De una oblicua Q R bajando de O. a E. cuyo extremo superior está pegado al PV.  De una oblicua S T en el espacio bajando de S. a N.

 

Contenidos Relacionados

LXXXI. Cuadrados en alineación consecutiva.— (Fig. 130).  Situamos en perspectiva un primer   cuadrado con los procedimientos ya conocidos.  Seguidamente desde D trazamos una recta hacia el PD que al intersectar la LFP–A , nos da E, desde el cual trazamos una paralela a LT dando F en la LFP–B.  Desde F lanzamos otra LFD y así sucesivamente.

Una vez conocido el procedimiento para llevar a perspectiva cualquier forma o figura, se puede fácilmente dibujar letras en perspectiva.

LXXVIII. Letra C.— Trazar las perpendiculares y LF correspondientes y tratar como en los anteriores casos. (Fig. 124).

LXXIX. Letras L, T, U y V.— (Figs. 125, 126, 127, 128). — Dibujar las letras invertidas en el geometral y tratar con el procedimiento conocido.

LXIX. Cuadrado paralelo a LT y en contacto con ésta.— El lado AB está en contacto con LT desde cuyos puntos extremos se trazan rectas LFP.  Desde B trazar una LFD.  La intersección en 1 con la línea A-LFP nos da el punto que permite trazar el lado 1 – 2 paralelo a A – B.  (Fig. 111).

LXIII. Ubicar en perspectiva un punto dado.— (Fig. 105).  Se tiene el punto A en el plano geometral a una distancia cualquiera de LT.  Desde A levantar una perpendicular a LT dándonos 1 de donde continuará hasta PP.  Con una abertura de compás 1 – A y con centro en 1, cortar la LT en 1’.  Unir 1’ con el PD opuesto que al cruzar con la línea PP-1 nos da el punto de intersección A’ que en perspectiva está a igual distancia de LT que A de LT.

Línea de Horizonte (LH).Es una línea invisible que se sitúa al nivel de la vista.  Está, en suposición, en la lejanía donde se unen cielo y tierra. (Ver Fig. 102).

Línea de Tierra (LT).Es la línea donde se sitúa el objeto más próximo al espectador, paralela a LH.

Punto Principal (PP).Es el punto que está situado en LH y hacia donde se dirige nuestra vista.

Los dibujos de perspectiva nos muestran los objetos no como son sino en forma tal como aparecen ante nuestra vista o en una fotografía. Se observará que las líneas que parten del lugar donde se halla el espectador parecen converger en un punto lejano del horizonte.  Así, las calles, las casas, los objetos y personas parecen achicarse a medida que se alejan de la vista (Fig. 99), y unirse todo en un solo punto llamado principal (PP) o de fuga.

El PP. puede estar a la izquierda, derecha o al centro de los objetos (Fig. 100).

LIX. Cubo en el espacio, paralelo a los dos planos.— (Fig. 95).  El cubo proyecta un cuadrado al PH (ver XXXVII).  Desde C y G llevar trazas a LT, desde aquí levantar trazas verticales que limitarán los rayos de proyección de A, C, E y G, formando otro cuadrado.